Vanaf hier kan ik gaan groeien met mijn file structuur. Alle niet-Nextcloud files wil ik in GIT hebben, op deze locatie.
232 lines
6.4 KiB
Python
232 lines
6.4 KiB
Python
import numpy as np
|
|
import pandas as pd
|
|
import matplotlib.pyplot as plt
|
|
import re
|
|
import telnetlib3
|
|
import csv
|
|
import time
|
|
|
|
Z_table = [
|
|
[ 0.00007362 , 0.00007713 ],
|
|
[ 0.00004428 , 0.00013248 ],
|
|
[ 0.00007899 , 0.0002094 ],
|
|
[ 0.00019893 , 0.00025827 ],
|
|
[ 0.00039363 , 0.00020892 ],
|
|
[ 0.00047154 , 0.00012468 ],
|
|
[ 0.00050655 , 0.00009711 ],
|
|
[ 0.00051549 , 0.00004863 ],
|
|
[ 0.00051693 , 0.00003609 ],
|
|
[ 0.00052323 , 0.00003429 ],
|
|
[ 0.00053727 , 0.00004557 ],
|
|
[ 0.00055146 , 0.00006702 ],
|
|
[ 0.00058626 , 0.00009252 ],
|
|
[ 0.00066285 , 0.00008859 ],
|
|
[ 0.00066801 , 0.00004833 ],
|
|
[ 0.00068286 , 0.00005697 ],
|
|
[ 0.00073578 , 0.00000705 ],
|
|
[ 0.0005028 , -0.00007668 ]
|
|
]
|
|
|
|
Z2_table = [
|
|
#[ 0.000141451 , -0.001248057 ],
|
|
[ 0.000482934 , -0.000453644 ],
|
|
[ 0.000522226 , -0.000231466 ],
|
|
[ 0.000532942 , -0.000115733 ],
|
|
[ 0.000533657 , -5.21512E-05 ],
|
|
[ 0.000528656 , -0.000028576 ],
|
|
[ 0.000525084 , -1.28592E-05 ],
|
|
[ 0.000522941 , 7.144E-07 ],
|
|
[ 0.000527227 , 1.00016E-05 ],
|
|
[ 0.000532228 , 1.85744E-05 ],
|
|
[ 0.000540801 , 3.35768E-05 ],
|
|
[ 0.000557232 , 5.85808E-05 ],
|
|
[ 0.00059581 , 8.50136E-05 ],
|
|
[ 0.000670822 , 8.71568E-05 ],
|
|
[ 0.000706542 , 0.000060724 ]
|
|
]
|
|
|
|
data_rows = [] # global 2-D list
|
|
state = {
|
|
"remaining_receive_lines": 0,
|
|
"freq": 10000.0,
|
|
"freq_step_multiply": 0.92,
|
|
"stop_freq": 0.1,
|
|
"initializing": 1
|
|
}
|
|
|
|
PATTERN = re.compile(
|
|
r"Va=(?P<Va>-?\d+\.?\d*)\s+"
|
|
r"Vp=(?P<Vp>-?\d+\.?\d*)\s+\|\s+"
|
|
r"Ia=(?P<Ia>-?\d+\.?\d*)\s+"
|
|
r"Ip=(?P<Ip>-?\d+\.?\d*)\s+\|\s+"
|
|
r"ZR=(?P<ZR>-?\d+\.?\d*)\s+"
|
|
r"ZX=(?P<ZX>-?\d+\.?\d*)"
|
|
)
|
|
|
|
def dump_csv(filename="data.csv"):
|
|
df = pd.DataFrame(
|
|
data_rows,
|
|
columns=["Freq", "Va", "Vp", "Ia", "Ip", "ZR", "ZX"]
|
|
)
|
|
df.to_csv(filename, index=False)
|
|
|
|
def append_line_to_file(column_nr, filename):
|
|
# Extract freq column (index 0)
|
|
# Extract ZR column (index 5)
|
|
# Extract ZX column (index 6)
|
|
zr_values = [row[column_nr] for row in data_rows if len(row) > column_nr]
|
|
if not zr_values:
|
|
print("No ZR data to write")
|
|
return
|
|
with open(filename, "a", newline="") as f:
|
|
writer = csv.writer(f)
|
|
writer.writerow(zr_values)
|
|
|
|
|
|
def extract_to_dataframe(line):
|
|
# Extract Va, Vp, Ia, Ip, ZR, ZX from a line and append them as a row to the global data_rows list.
|
|
global state
|
|
match = PATTERN.search(line)
|
|
if not match:
|
|
return # silently ignore malformed lines
|
|
row = [
|
|
float(state["freq"]),
|
|
float(match.group("Va")),
|
|
float(match.group("Vp")),
|
|
float(match.group("Ia")),
|
|
float(match.group("Ip")),
|
|
float(match.group("ZR")),
|
|
float(match.group("ZX")),
|
|
]
|
|
data_rows.append(row)
|
|
|
|
def process_line(line):
|
|
extract_to_dataframe(line)
|
|
# Example: print last row
|
|
if data_rows:
|
|
print("Last row:", data_rows[-1])
|
|
|
|
def get_dataframe():
|
|
return pd.DataFrame(
|
|
data_rows,
|
|
columns=["Va", "Vp", "Ia", "Ip", "ZR", "ZX"]
|
|
)
|
|
|
|
class TelnetReader:
|
|
def __init__(self, host, port=23, timeout=10):
|
|
self.host = host
|
|
self.port = port
|
|
self.timeout = timeout
|
|
self.tn = None
|
|
|
|
def connect(self):
|
|
print(f"Connecting to {self.host}:{self.port} ...")
|
|
self.tn = telnetlib3.Telnet(self.host, self.port, self.timeout)
|
|
print("Connected.")
|
|
|
|
def disconnect(self):
|
|
if self.tn:
|
|
self.tn.close()
|
|
self.tn = None
|
|
print("Disconnected.")
|
|
|
|
def read_loop(self):
|
|
global state
|
|
# Main loop: reads incoming lines forever
|
|
try:
|
|
while state["freq"] > state["stop_freq"]:
|
|
line = self.tn.read_until(b"\n")
|
|
if not line:
|
|
break
|
|
|
|
decoded = line.decode("utf-8", errors="ignore").strip()
|
|
self.process_line(decoded)
|
|
|
|
except KeyboardInterrupt:
|
|
print("Interrupted by user.")
|
|
print(data_rows)
|
|
dump_csv("measurements.csv")
|
|
|
|
def process_line(self, line):
|
|
global state
|
|
# Override or extend this method to extract data.
|
|
# print(f"RAW: {line}")
|
|
if state["remaining_receive_lines"] > 0 :
|
|
state["remaining_receive_lines"] -= 1 # we are waiting for settling - just skip the line
|
|
else:
|
|
# prepare new frequency measurement
|
|
if not state["initializing"] == 1:
|
|
extract_to_dataframe(line) # capture the measurement
|
|
if state["freq"] > 0.7:
|
|
state["freq"] *= state["freq_step_multiply"] # calc next freq
|
|
else:
|
|
if state["freq"] > 0.4:
|
|
state["freq"] *= state["freq_step_multiply"] ** 2 # skip 1/2 steps to speed up
|
|
else:
|
|
state["freq"] *= state["freq_step_multiply"] ** 4 # skip 3/4 steps to speed up
|
|
if state["freq"] <= state["stop_freq"]:
|
|
print("Reached stop frequency")
|
|
else:
|
|
if state["freq"] > 1:
|
|
response = f"\rf{state["freq"]:.1f}\r" # new freq
|
|
else:
|
|
response = f"\rf{state["freq"]:.3f}\r" # new freq
|
|
self.tn.write(response.encode("utf-8"))
|
|
bandwidth = state["freq"]/10
|
|
if bandwidth > 1 :
|
|
bandwidth = 1
|
|
response = f"b{bandwidth:.3f}\r" # new freq
|
|
self.tn.write(response.encode("utf-8"))
|
|
state["remaining_receive_lines"] = 1 + 3/bandwidth
|
|
print(line)
|
|
print(state)
|
|
state["initializing"] = 0
|
|
|
|
# Example:
|
|
# value = self.extract_value(line)
|
|
# self.store_value(value)
|
|
|
|
# Example placeholder methods
|
|
def extract_value(self, line):
|
|
pass
|
|
|
|
def store_value(self, value):
|
|
pass
|
|
|
|
|
|
if __name__ == "__main__":
|
|
reader = TelnetReader(host="10.1.122.152", port=2002)
|
|
|
|
try:
|
|
reader.connect()
|
|
reader.read_loop()
|
|
finally:
|
|
reader.disconnect()
|
|
|
|
|
|
Z_points = [complex(r, i) for r, i in Z_table]
|
|
Zp = np.array(Z_points)
|
|
Z2_points = [complex(r, i) for r, i in Z2_table]
|
|
Z2p = np.array(Z2_points)
|
|
|
|
plt.plot(
|
|
Zp.real,
|
|
Zp.imag,
|
|
marker='x',
|
|
color='blue',
|
|
label="shunt-300u"
|
|
)
|
|
plt.plot(
|
|
Z2p.real,
|
|
Z2p.imag,
|
|
marker='x',
|
|
color='red',
|
|
label="clamp"
|
|
)
|
|
|
|
plt.xlabel("Re{Z} [Ω]")
|
|
plt.ylabel("-Im{Z} [Ω]")
|
|
plt.title("Nyquist Plot")
|
|
plt.grid(True)
|
|
plt.legend()
|
|
plt.show()
|